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SUMMARY The objectives of this survey are to provide an in-depth
coverage of a few selected research papers that have made significant con-
tributions to the development of Network Function Virtualization (NFV),
and to provide readers insights into the key advantages and disadvantages of
NFV and Software Defined Networks (SDN) when compared to traditional
networks. The research papers covered are classified into four categories:
NFV Infrastructure (NFVI), Network Functions (NFs), Management And
Network Orchestration (MANO), and service chaining. The NFVI papers
describe “framework” software that implement common functions, such as
dynamic scaling and load balancing, required by NF developers. Papers
on NFs are classified as offering solutions for software switches or mid-
dleboxes. MANO papers covered in this survey are primarily on resource
allocation (virtual network embedding), which is an orchestrator function.
Finally, service chaining papers that offer examples and extensions are re-
viewed. Our conclusions are that with the current level of investment in
NFV from cloud and Internet service providers, the promised cost savings
are likely to be realized, though many challenges remain.
key words: Network Function Virtualization, Software Defined Networks,
Software switches, middleboxes, orchestrators

1. Introduction

Network FunctionVirtualization (NFV) is a term used to rep-
resent the implementation of data-plane network functions in
software that is executed on commodity hosts. The hypothe-
sis is that NFV will incur lower capital expenditures (capex)
and operating expenditures (opex) when compared to tradi-
tional switches/routers and middlebox appliances in which
data-plane network functions are typically implemented in
custom hardware.

Early interest in NFV was expressed by communica-
tion service providers, with many of them collaborating on a
2012 white paper [1]. Subsequently, a standardization group
called Network Functions Virtualisation Industry Specifica-
tion Group (NFV ISG) was created by ETSI.

The architectural components of NFV are: (i) Network
Function Virtualization Infrastructure (NFVI), (ii) Network
Functions (NFs), and (iii) Management And Network Or-
chestration (MANO). Infrastructure consists of hardware (a
single computer or a compute cluster), and framework soft-
ware, which offers functions that are commonly required by
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NFs, such as NF placement, dynamic scaling, etc. Data-
plane network functions considered for software implemen-
tation in commodity hosts range from basic packet forward-
ing to complex middlebox functions such as intrusion pre-
vention systems. When NFs are executed on Virtual Ma-
chines (VMs), they are referred to as Virtual Network Func-
tions (VNFs). MANO components include management
functions, such as Fault management, Configuration man-
agement, Accounting, Performance monitoring and Security
(FCAPS), and orchestrators, which manage service chains of
multiple NFs.

Early research work on NFV focused on NF placement,
also referred to as resource allocation, for optimally locat-
ing NFs in physical servers and/or VMs. A 2013 survey
[2] focused on virtual network embedding, and reported on
several optimization techniques for ideal NF placement.

A 2015 paper [3] on NFV provides an excellent sur-
vey, covering standards, industry NFV efforts, and research
papers published before Feb. 2015. Therefore, this survey
paper focuses primarily on research papers published after
this date.

Another 2015 survey [4] focuses on software-defined
NFV and service chaining. It provides the following com-
prehensive list of network functions suitable for NFV: (i) net-
work switching elements such as broadband remote access
server, broadband network gateways, and IP routers, (ii) mo-
bile network systems, such as LTE eNodeB, and gateways,
(iii) residential modems and routers, (iv) tunneling gate-
ways, such as IPsec/SSL virtual private network gateways,
(iv) traffic analysis elements for quality of experience mea-
surement, (v) Service Level Agreement (SLA)monitors, (vi)
Voice-over-IP systems such as IP multimedia sub-systems,
(vi) application-level optimizers such as CDN servers, load
balancers, and application accelerators and (vii) network se-
curity devices, such as firewalls, Deep-Packet Inspection
(DPI) based and anomaly based Intrusion Detection System
(IDS), denial-of-service attack detectors, and malware and
spam detectors [4].

A 2016 NFV-security survey [5] organized challenges
into the following categories: (i) NFVI security, (ii) defining
interface standards for security functions, (iii) MANO secu-
rity, and (iv) security challenges stemming from the dynamic
scalability (elasticity) aspect of NFV. The paper then de-
scribes various security platforms that are both open-source
and offered by companies.

The intent of this survey is to provide an in-depth treat-
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Fig. 1 Router architecture.

ment of a few research papers, rather than a shallow coverage
of a broad range of papers. Therefore, this survey is not com-
prehensive, but instead offers readers a fair understanding of
the covered research papers.

Section 2 describes how NFV relates to traditional net-
works and Software Defined Networks (SDN). Section 3
describes three papers that offer NFVI framework soft-
ware, useful to NF developers and service-chain creators.
Section 4 has two subsections for NFs, one for software
switches/routers, and another for middleboxes. Section 5
offers a light coverage of NFV management and orchestra-
tion systems. Section 6 surveys papers that offer solutions to
service chaining. The paper is concluded in Sect. 7.

2. Background

2.1 Traditional Architecture

Figure 1(a) shows a photograph of a modular router, which
includes a 12-port Ethernet line card, and a 4-port opti-
cal line card, a route-processor card with a single Ethernet
control-plane port, and other cards. Figure 1(b) shows an
unfolded view of the router with line cards being split into
an input-side line card and output-side line card (in reality,
input-side and output-side functions are on the same line
card). The route-processor card, as the name suggests, has
a built in processor, which runs an operating system and
software that implements control-plane protocols, such as
routing protocols and signaling protocols. Data-plane func-
tions, primarily packet forwarding, are implemented in the
line-cards. In high-speed routers†, these functions are im-
plemented in custom hardware, such as ASICs and Ternary
CAMs (TCAMs).

†We use the terms “routers” and “switches” interchangeably in
this context because most high-end systems offer both L3 and L2
packet-forwarding services.

2.2 Software Defined Networks

When datacenters started deploying large numbers of com-
puters, e.g., 1M computers in one datacenter, the cost of
switches to interconnect these computers became significant.
For example, if 48-port switches are used, more than 20K
switches are needed to interconnect 1M computers. If each
switch costs $100K (which is the cost of a 48-port 10GE
switch [6]), the total capital expenditures for switching is
significant. The high cost of these switches is attributed
to software and hardware development costs. A significant
component of opex cost is per-router software licensing and
maintenance fees.

In Software Defined Networks (SDNs), most of the
control-plane software is removed from the route-processor
card, and instead re-implemented for execution on exter-
nal commodity hosts, which are under the control of the
cloud/Internet service provider. The SDN controller soft-
ware can hence be maintained (modified for bug fixes) and
upgraded to support new features by the provider itself, with-
out having to wait for the switch vendor to make modifi-
cations. The hypothesis is that software development and
maintenance costs in the SDN model will be lower than the
difference in cost between a traditional switch/router model
and a model designed for SDN networks.

Figure 2(a) shows a network of traditional routers, in
which the control-plane protocols (such as routing protocols)
and forwarding-table computation algorithms are imple-
mented in software in the route-processor card as illustrated
in Fig. 1. For example, Open Shortest Path First (OSPF)
routing protocol modules in the routers will exchange mes-
sages with neighbors, learn the topology, run Dijkstra’s or
other shortest-path algorithms to compute the routing tables.
The routing tables are then copied from the router processor
card into forwarding tables stored in line cards. These for-
warding tables are consulted by the ASICs/other hardware
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Fig. 2 Illustration of the SDN concept [7].

that perform line-rate packet forwarding.
Figure 2(b) illustrates the SDN solution. In SDN, the

cost of routers is lowered by removing the control-plane soft-
ware from the router-processor cards, and instead running a
simple control agent, e.g., OpenFlow agent, in the proces-
sors located within the routers/switches. Control-plane algo-
rithms for actions such as forwarding-table computation are
executed in SDN controllers installed on off-the-shelf com-
puters as illustrated in Fig. 2(b). The computed forwarding
tables are then downloaded to the routers/switches via a pro-
tocol such as OpenFlow or NETCONF.

Clearly, there cannot be a single giant SDN controller
for the entire Internet! Therefore, each organization (do-
main or autonomous system) that runs its own network will
deploy and operate an SDN controller. “East-West proto-
cols” is the term used for inter-SDN controller communi-
cations, while “North-South protocols” is the term used for
protocols between an SDN controller and the domain’s own
switches/routers.

In summary, the capex/opex cost of the routers/switches
will be lower in the SDN solution since this equipment will
not have the complex software required for control-plane
protocols such as OSPF, BGP, etc. Some large cloud and
service providers will be able to develop and maintain the
SDN controller software at low costs, but this may be chal-
lenging for others, such as enterprise network organizations.

2.3 Network Function Virtualization

In Sect. 2.2, we noted that the high cost of switches/routers
is largely attributable to software and hardware development
costs. SDN offers a solution for reducing development costs
of the software run on route-processors in switches/routers.
NFV offers a solution for reducing hardware development
costs of switches/routers. By observing that basic data-plane
functions such as packet header lookup and forwarding can
be implemented in software on a commodity server, the
assumption that custom hardware is required for data-plane
functions has been challenged by NFV.

Commodity x86/IA (Intel Architecture)-based servers
are cost-effective and energy-efficient. Furthermore, new

Fig. 3 Network Functions Virtualization (NFV) supports the execution
of multiple network functions in one server.

servers, which implement the latest most-advanced proces-
sor, memory and disk technologies, and are more energy-
efficient, can replace the old servers on which NFs are being
executed. In addition, a software NF can be developed to
run on multiple operating systems, VM hypervisors, and
containers. Industry competition in the commodity-server
and OS/hypervisor/container markets is expected to help re-
duce capex and opex of NFV-based network switches and
middleboxes.

Figure 3 illustrates that using VMs, multiple network
functions, such as firewall, router, DPI and tester/monitor,
can be executed on a single server. Sharing the same physical
server for multiple network functions allows for higher CPU
resource utilization and energy efficiency when compared to
the traditional solution in which each network function is im-
plemented in its own appliance. In small campus networks,
it is potentially feasible to implement all required network
functions in a small number of physical servers using multi-
ple VMs per server.

Figure 4 shows that in the traditional approach, each
network appliance consumes a fixed amount of power, e.g.,
the firewall consumes 200W, the router consumes 1.5KW,
and the tester/monitor consumes 400W. In contrast, in NFV,
if all three functions can be implemented in VMs in a single
commodity server, there can be significant energy savings
since such servers typically consume around 750W.
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Fig. 4 Custom-hardware appliances consume more power than an
energy-efficient NFV solution.

Fig. 5 NFV supports scalability with traffic load, while saving energy.

Fig. 6 Role of load balancer in NFV.

Figure 5 illustrates the scalability value of NFV. As
traffic load increases, more servers can be powered-on, and
during intervals of low traffic load, some servers can be
powered off to save energy.

Figure 6 illustrates the role of a load balancer. A func-
tion of a load-balancer is to distribute incoming packets to
differentVMs and/or different servers. For example, in a fire-
wall, incoming packets are distributed to different servers by
hashing on fields in the packet header. Load balancing is
required to support scalability.

Finally, Fig. 7 illustrates the pipelining approach to scal-
ability, using IP router as an example. The IP router network
function is divided into several sub-function blocks, and
blocks are connected in a pipeline. In Fig. 7, four types
of blocks are illustrated in a 4-stage pipeline. Block B
is a longest-prefix matching engine (LME). Since longest-
prefix matching is a complex operation, and therefore, two
instances ofBlockBare executed in parallel to reduce packet-

Fig. 7 Scale-up technique using pipelining method.

processing delay through this stage of the pipeline. In the
pipelining approach, delay in each stage should be almost the
same so that all CPU-cores are kept busy with a steady flow
of packets. The pipelining approach is suitable for network
functions if there are no loops between the blocks, e.g., block
A is revisited after block C.

3. NFVI Framework

NFV infrastructure includes hardware and software. Since
the hardware is primarily commodity servers, we focus here
on NFVI software. The term “framework” has been used by
some research papers to describe common software that is
useful for NF developers. Functions such as NF placement,
dynamic scaling, fault tolerance, and load balancing are ex-
amples of these common functions. Thus NFVI framework
software will enable an NF, or a service chain consisting of
multiple NFs, to achieve high performance, high reliability,
security, etc.

In this section, we introduce three recently developed
NFVI frameworks: ClickOS [8], [9], Elastic Edge (E2) [10],
and NetVM/OpenNetVM [11], [12]. All these frameworks
enable NFs to achieve near-line rates at 10Gbps on com-
modity servers by optimizing I/O subsystems and using
high-performance packet-processing libraries. ClickOS and
NetVM/OpenNetVM are frameworks designed for a single
server, but support scalability by increasing the number of
VMs or server components (i.e., CPU, memory, and NIC).
E2 supports clustered servers connected by switches, and
supports scalability by increasing the number of physical
servers (or racks). Support for service chaining is available
on all these frameworks in either static or dynamic mode.

3.1 ClickOS

Motivation:
ClickOS [8], [9] is a VM platform that supports a vari-

ety of middlebox functions. Current custom-hardware based
middleboxes have problems such as high costs and manage-
ment issues, and are typically inflexible in their support for
modifications. Software-based middleboxes, designed to
run on commodity servers, are hence desirable. However,
middlebox functions run on common hypervisors, such as
KVM and Xen, often suffer from low performance, since
these hypervisors are not optimized to support VMs running
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middlebox functions. ClickOS was developed to provide a
common platform for software middleboxes based on Click
software. It also addresses the problems of boot-up delays
with VMs, high resource utilization, and low performance.

Solution:
ClickOS is a combination of a Xen-based OS called

“MiniOS” and Click modular router [13], [14]. MiniOS
offers all the functions needed to run Click, without the ad-
ditional functions in a typical Linux kernel. For example,
Linux-kernel functions such as multi-user support, support
for multiple memory address spaces, and support for filesys-
tems and other devices, are not required to run Click. Thus
ClickOS saves CPU cycles and memory, and has a short
boot-up time. Each instance of ClickOS run on a physical
machine is essentially a VM. Users can create and destroy
ClickOS VMs by using the CLI and connecting to a Xen-
store database that manages control threads of MiniOS. In
addition, a network driver was optimized by modifying its
receive function, and using a virtual network device and
software switch based on netmap [15]. ClickOS achieves
high scalability by running many lightweight VMs, when
compared to the current commonly used VM solutions. The
ClickOS software is open-source and distributed under the
3-Clause BSD license [16].

Evaluation:
The authors evaluated the performance of ClickOS on

x86 commodity servers (one server was used to run a packet
generator and a packet sink, and another server was used for
ClickOS VMs). Even though ClickOS was compiled with
more than 200 Click elements, the size of the ClickOS VM
image was as small as 5 MB. A ClickOS can be created
and initiated to run middlebox functions within approxi-
mately 30 milliseconds. The authors successfully ran 128
ClickOS VMs on a single server and demonstrated nearly
10Gbps throughput on a single 10GE NIC. By using addi-
tional CPUs and 10GE NICs, ClickOS achieved 27.5-Gbps
packet-forwarding performance on a commodity server. The
paper also described implementations of a few middlebox
functions (such as firewall, NAT, and load balancer), and
reported that ClickOS achieved almost line-rate processing
when the packet size was 512 bytes or larger.

3.2 Elastic Edge (E2)

Motivation:
A framework called Elastic Edge (E2) offers NF de-

velopers a set of solutions for common problems such as
dynamic scaling, and NF placement [10], and thus saves
each programmer the effort of having to implement code to
deal with these issues. It can be used for a single NF im-
plementation or an NF service chain. The solution draws
lessons from the MapReduce framework, which “hides the
messy details of parallelization, fault-tolerance, data distri-
bution and load balancing” [17] from programmers in the
data-analytics space.

Solution:
The E2 software consists of three components: (i) E2

Manager that monitors and enables the creation and deletion
of NFs (which can be programmed by others) on a set of
servers, (ii) E2 Dataplane (E2D) that provides a set of li-
braries for use by NFs, and a (iii) Server agent that manages
the NFs on each server. Through an E2 interface, an operator
specifies NF descriptions and the underlying hardware (e.g.,
number of cores per server). This interface allows the oper-
ator to specify a set of policy statements called pipelets. A
pipelet is defined for each traffic class. The pipelet specifies
a directed acyclic graph (DAG) for each traffic class, which
shows how packets from the corresponding traffic class are
processed by NFs. The E2D software is an enhancement of
a package called SoftNIC, which runs on top of Intel’s Data
Plane Development Kit (DPDK) [18]. SoftNIC leverages
features of DPDK such as polling for packets for high-speed
implementation of packet-processing functions. An example
E2D extension to SoftNIC consists of load monitoring and
load balancing between NFs (necessary to support dynamic
scaling). The E2 Control plane parses the input about NFs
and hardware provided by an operator and determines on
which server to place each NF, how to interconnect the NFs
to realize services, how to dynamically scale the hardware
resources used as traffic load changes, and ensures host affin-
ity (which means all packets of a flow are sent to the same
NF instance). The E2 software is open-source [19].

Evaluation:
The E2 prototype consists of off-the-shelf servers inter-

connected by commodity switches with N ports, of which K
ports carry traffic in and out of the E2 cluster while the rest
of the ports are used for inter-NF (intra-E2-cluster) traffic.
The E2 solution is evaluated to determine whether the E2D
layer adds a significant latency overhead, and whether it af-
fects throughput. The results show that a solution in which
the NF is executed directly over DPDK vs. a solution with
E2D in between the NF and DPDK have almost the same
performance (latency impact is less than a µs). Experiments
were run to measure the performance of three NFs: an IDS,
a URL-based filter, and a WAN optimizer, with and without
the bytestream vports feature of E2. This feature performs
the common function of TCP flow reassembly required in
DPI based NFs. If there are multiple such NFs in a ser-
vice chain, the bytestream vports feature saves processing
capacity.

Impact:
The paper uses the drive by telecommunication carriers

to modernize Central Offices (COs) as a motivation for E2.
COs support many functions, such as DPI, NAT, DDoS pre-
vention, firewalls, WAN acceleration, etc. Therefore, with
a solution such as E2, a service chain of NFs running on
multiple servers, can be created and managed with an E2
manager.
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3.3 NetVM and OpenNetVM

Motivation:
The goal of NetVM [11] was to provide an NFV plat-

form that can provision network functions on commodity
servers at high throughput (near line speed for 10GE links).
The authors note that while SDN has enabled dynamic and
flexible configuration in the control plane, data-plane NF
implementations are still limited in performance.
Solution:

NetVM is an NFV environment built over the KVM
platform and the Intel DPDK library. In the data plane, net-
work functions (e.g., firewall, proxy, router) are embedded
within VMs. Network services are composed by pipelining
VMs. To leverage the performance enhancements offered by
DPDK, NetVM applies a shared-memory framework that
provides packet delivery between VMs without copying.
NetVM also supports security domains so that packets are
processed only in trusted VMs. Packet flows and VMs in
the NetVM platform are managed by the tight combination
of an OpenFlow controller and an NFV orchestrator.
Evaluation:

The authors evaluated NetVM on two commodity
servers, which were used to run a traffic generator and the
NetVM system. A NetVM L3 packet forwarding engine
achieved the full line rate of a 10GE NIC, while other solu-
tions (e.g., Click, SR-IOV [20]) achieved only 5–6Gbps on
the same servers. The authors also investigated the scala-
bility of NetVM by increasing the number of CPUs and the
number of ports. With another server, which had 28 cores
and 4 NICs, a NetVM L2 packet forwarding application
achieved 34.5Gbps, while SR-IOV achieved only 22Gbps.
Extension:

Based on the architecture of NetVM, OpenNetVM [12]
was developed by the same team. In OpenNetVM, network
functions are run inDocker containers instead of KVMVMs.
This container-based architecture offers a lighter and sim-
pler deployment of network functions, and allows for easy
replication of network functions for scalability. Both the
management framework and network functions have control
capabilities, which enable OpenNetVM to configure service
chains dynamically. The authors evaluated their service-
chaining solution with an experiment, which showed that
OpenNetVMdropped about 4%of the packets in a 6-function
chain, while ClickOS dropped about 39% of the packets in a
3-function chain. The paper also reported that the time to ini-
tiate network functions in a container is only 0.526 seconds
on average, while the same functions required at least 12 sec
when run on KVM VMs in the original NetVM platform.
The OpenNetVM software is open-source and distributed
under the BSD license [21].

4. Network Functions

Section 4.1 describes software switches/routers that perform

packet forwarding functions. Section 4.2 describes two mid-
dlebox implementations.

4.1 Software Switches/Routers

Before reviewing new research papers on software switches,
we note that software switches are designed for two pur-
poses: (i) to support packet forwarding between VMs within
a server, and (ii) as a replacement for physical switches that
interconnect servers. Solutions in the first category include
Open vSwitch (OVS) [22], a hypervisor offload solution [23],
and SnabbSwitch [24]. Solutions in the second category in-
clude the Click modular router [13], RouteBricks [25], Pack-
etShader [26], Lagopus [27], [28] and ScaleBricks [29].

Sections 4.1.1, 4.1.2 and 4.1.3 describe the three so-
lutions in the first category. Section 4.1.4 provides a short
review of three pre-2015 solutions, Click, RouteBricks and
PacketShader. Section 4.1.5 reviews netmap and DPDK,
both of which offer libraries and packages for fast packet
processing. Such libraries are essential for packet process-
ing at high speeds for solutions in the second category. Sec-
tions 4.1.6 and 4.1.7 describe two solutions, Lagopus and
ScaleBricks, both of which use DPDK.

4.1.1 Open vSwitch (OVS)

Problem:
When datacenters embraced virtualization, datacenter

networking had to change to support a growing number of
virtual ports, i.e., ports corresponding to virtual machines.
Early virtual switches within the hypervisor connected vir-
tual machines directly to the physical L2 switches. This
approach is not scalable because every time a new set of
VMs is created, the physical L2 network switches have to
be reconfigured. Furthermore when VMs are migrated, the
physical L2 switch tables need to be modified by a controller
or pay the cost of address learning. Therefore, scalability and
mobility were the primary drivers for a new type of virtual
switch. Virtual switch software provides packet forwarding
between VMs, while physical switches are used only for for-
warding packets between hypervisors (effectively, between
VMs on different physical servers).

Solution:
OVS [22] comprises a user-space daemon that can be

run on different operating systems (OS), and a data-path ker-
nel module that is OS-specific. When a packet arrives, it first
goes through the kernel module. If the kernel module has
instructions on how to deal with the packet, the packet is han-
dled according to the instructions. If not, the kernel module
sends the packet to the user-space daemon, which handles
the packet, creates instructions for future handling of simi-
lar packets, and sends both the packet and the instructions
back to the kernel module. The OVS user-space daemon
receives and processes OpenFlow messages sent by an ex-
ternal controller to create the packet-processing instructions.
But since OpenFlow does not support certain functions, such
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as configuring queues for QoS support, an OVS DataBase
(OVSDB) management protocol has been defined and im-
plemented as a complement to OpenFlow. OVS maintains
both flexibility and high performance without excessive use
of hypervisor resources through the use of flow caching (for
microflows and megaflows), a packet classifier that uses tu-
ple space search [30] and is caching-aware, and proactive
flow-table programming. Cache invalidation is distributed
across multiple threads to increase performance and to pre-
vent revalidation operations from blocking the setup of new
flow entries. In short, this 2015 paper [22] describes many
improvements made to OVS. The OVS software is open-
source and distributed under the Apache License 2.0 [31].

Evaluation:
Operational performance of OVS in a commercial dat-

acenter was characterized. The authors recorded 24 hours of
OVS performance data, with statistics on cache size, cache
hit rate, and CPU usage, by polling more than 1000 hypervi-
sors every 10 minutes. Observed cache sizes were generally
small, and even the largest was well within the limit set by
OVS. Hit rates were high when traffic was heavy (98.0%)
and lower under a lighter load (74.7%), with an overall value
of 97.7%. Few hypervisors saw large traffic loads. CPU
load for the OVS user-space daemon was, on average, 5% or
less for 80% of hypervisors. In addition, experiments were
executed to characterize caching performance.

4.1.2 Hypervisor Offload Solution

A 2016 paper by Wang et al. [23] first lists various host
virtualization solutions (KVM, Xen, VMware, and con-
tainers) and I/O virtualization techniques (bridge, virtio,
Passthrough and single-root input/output virtualization (SR-
IOV)). The authors then describe their implementation of a
simple L2 forwarding engine, and an L3 forwarding soft-
ware using CuckooSwitch [32], [33] and DPDK. The hyper-
visor was KVM and I/O virtualization techniqe was SR-IOV
with Passthrough. An extensive set of experiments was exe-
cuted with two hosts that were interconnected via two 10GE
links. A high-speed traffic generator (pktgen-dpdk) was
run on one host, and L2-forwarding or L3-forwarding soft-
ware was run on the second host. The experiments compared
packet-forwarding throughput, latency and jitter when using
a random assignment of packets to VMs (running on lcores;
each server had 32 lcores), a NUMA-aware assignment of
packets to VMs, a worst-case assignment, and a bare-metal
test. Measurements showed that bare-metal outperformed
any configuration in which VMs were used.

Noting that virtualization overhead will limit NFV scal-
ing, the authors looked for a better solution to support high-
speed packet forwarding between VMs within a virtualized
server. The authors developed a solution in which data-
plane packet forwarding is offloaded to the hypervisor. The
authors state that their solution is similar to OVS, which as
described above, has a kernel module for packet forward-
ing. The paper shows experimental results that attest to

better throughput and latency performance for the hypervi-
sor offload solution when compared to OVS-DPDK (which
is discussed in Sect. 4.1.5).

4.1.3 SnabbSwitch

SnabbSwitch [24] is an open-source user-space virtual
switch for the KVM hypervisor, implemented in Lua, which
is a scripting language that was proposed in 1993 and has
evolved to support applications in many domains [34]. It
adds two innovations to the field of virtual switches: Lu-
aJIT, which is a high-performance implementation of Lua,
and vhost-user, which allows VMs to send network traffic
directly to a user-space virtual switch such as SnabbSwitch,
without passing through the kernel. SnabbSwitch comprises
three parts. First, app is sofware that implements a net-
work function, or core functions, such as a NIC driver and
virtio-net device, which allows NFs running in VMs to
send traffic directly to SnabbSwitch, bypassing the kernel.
Apps are the means by which SnabbSwitch can be extended
and altered (the authors have already added a traffic limiter
and a packet filter). Second, a link is a buffer that holds
packets between different apps. Third, the app engine
configures, initializes, and manages apps and links to con-
trol the flow of execution.

After optimizing SnabbSwitch, its performance was
compared with that of Virtual Function IO (VFIO) [35] and
SR-IOV [20], both of which use hardware assistance, Linux
Bridge, OVS, and OVS-DPDK for two scenarios: (i) unidi-
rectional VM-to-VM communication, and (ii) bidirectional
VM-to-VM communication in which the L2FWD applica-
tion provided by the DPDK open-source project was run as
a guest in its own VM. Results show that SnabbSwitch can
perform packet forwarding between VMs at multiple Gb/s,
and its relative performance to other solutions depends upon
the tested scenario and packet size. SnabbSwitch software
is open-source and distributed under the Apache License 2.0
[36].

4.1.4 Click, RouteBricks, PacketShader

Given our focus on post-2015 research papers, in this section,
we note, very briefly, a few interesting points about three
seminal papers on software switches. These include the
2000 Click modular router paper [13], the 2009 RouteBricks
paper [25] and the 2010 PacketShader paper [26].

Since theClick modular router work predated, by many
years, the NFVmovement, we were interested in understand-
ing the motivation for Click. The motivation was primarily
to support research on active topics under investigation such
as packet dropping policies, differentiated services, etc. The
Click modular router is open-source software [14]. Route-
Bricks uses Click software and achieves high speeds by using
multiple cores within a single server, and multiple servers
interconnected in a generalized butterfly topology. With 4
servers, RouteBricks processed 64B packets at 12Gbps. The
RouteBricks software is open-source and distributed under
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the GNU GPL v2 [37]. PacketShader is a software router
designed to run on a system with GPU accelerators. Packet-
Shader, running on a single commodity host, processed 64B
packets at 39Gbps. The PacketShader software is open-
source and distributed under the GNU GPL v2 [38].

4.1.5 Libraries for Fast Packet Handling

Support for fast packet processing is provided by solutions
such as netmap [15] and Intel’s DPDK [18]. For example,
Rizzo states that “netmap is a framework to reduce the cost
of moving traffic between the hardware and the host stack”
[15]. As noted in the web site [39], netmap is a kernel
module, which has been implemented in Linux, FreeBSD,
and Windows. Unlike with DPDK, there are no restrictions
on the NIC hardware that can be used with netmap. A
companion software switch called VALE is also described
in the netmap web site. The netmap software is open-source
and distributed under the BSD 2-clause “simplified” license
[39].

DPDK is a user-space implementation available for
FreeBSD and various Linux implementations [40] and re-
quires specific types ofDPDK-compatibleNICs [41]. DPDK
supports polling, packet coalescence, lock-free queues, the
use of huge pages, and zero-copy transfers. When compared
to interrupt mode, polling is better for achieving lower re-
sponse times. Lock-free queues are an important mutual
exclusion solution necessary for high-performance systems
[42]. Lock-free queues are used between I/O threads and
packet-processing threads. The use of huge pages to reduce
the rate of Translation Lookaside Buffer (TLB) misses is
important in packet processing given that most tasks involve
memory accesses. Finally, the data direct I/O technology
[43] provided by DPDK moves data directly from the NIC
to the last-level processor cache, and thus reduces main-
memory accesses. DPDK is open-source and distributed
under the 3-Clause BSD license [18].

A version of OVS ported to DPDK is available on
GitHub [44], though this software has not been modified
since 2015. A Dec. 2016 version is reported by Intel [45],
and RedHat [46].

4.1.6 Lagopus

Lagopus [27], [28] is a software OpenFlow switch designed
for wide-area network service providers. Lagopus is de-
signed to be run on multi-core processors. For example, in
an eight-core prototype, two cores were used for I/O receive
threads, two cores for I/O transmit threads, and four cores for
flow-table lookup worker threads. The receive and transmit
threads use DPDK libraries and drivers to move packets in
and out of NICs. Ring buffers are shared between the I/O
receive thread and the worker thread on the ingress side, and
between the worker thread and the I/O transmit thread on the
egress side. Lagopus uses parallelization rather than pipelin-
ing. In other words, all functions executed on a single packet
header are handled by the same worker thread, while dif-

ferent packets are sent to different worker threads. Further,
the Lagopus implementation includes: (i) packet classifica-
tion for load balancing with explicit assignment of packets
to worker threads, (ii) batch handling of packets (packet coa-
lescing) between the I/O threads and worker threads, and (iii)
high-performance flow-table lookup solutions [47]. Packet
forwarding rates of 10Gbps were reported in experimental
studies of Lagopus performance [27], [28]. The Lagopus
software is open-source and distributed under the Apache
License 2.0 [48].

4.1.7 ScaleBricks

ScaleBricks [29] offers a design for creating network ap-
pliances by using clusters of servers. Unlike RouteBricks,
ScaleBricks uses a switch for load balancing. The primary
goal of ScaleBricks is to offer throughput scaling, scaling
of the forwarding table (also called Forwarding Information
Base, or FIB) and scaling of the FIB-update rate. It builds
on the authors’ prior work on CuckooSwitch mentioned ear-
lier, and it uses DPDK. A ScaleBricks design consisting of
N servers uses a switch to interconnect these servers. For
fast packet forwarding, the whole FIB should be located in
each server so that the ingress server can lookup the FIB to
determine the egress server for each arriving packet. How-
ever, this design requires a large amount of memory, and
a high update rate as all servers must store the whole FIB.
Another design is to divide the FIB into N partitions, and
have the ingress node determine the indirect node that holds
the appropriate partition for an arriving packet by using a
hashing scheme. The indirect node would then be able to
determine the egress node (from its FIB partition) to which
an arriving packet should be directed. However, this scheme
has the disadvantage of two-hop latency. The key contribu-
tion of ScaleBricks is a solution that avoids both the two-hop
latency required in the hash-partitioned design, and the need
for large memory required in the solution in which the full
FIB table is located at each server.

Packet forwarding in an LTE-to-Internet gateway is
the application selected for testing ScaleBricks. Signifi-
cant performance improvements of a commercial gateway
were demonstrated with the ScaleBricks design. This paper
discusses problems such as skewed forwarding table dis-
tribution between the servers (which can happen because
a controller assigns flows to different servers), failure han-
dling, and states the authors’ goal to test the ScaleBricks
design for other stateful applications.

4.2 Middleboxes

As examples, two research papers that describe implemen-
tation of middleboxes in software for commodity hosts are
described in depth. Section 4.2.1 describes a firewall frame-
work implementation, and Sect. 4.2.2 describes a NAT NF
implementation.
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4.2.1 Firewall

Problem:
Deng et al. [49] address the security challenge of pro-

viding firewall protection for virtual networks, in which net-
work functions are implemented in VMs on servers. The
challenge lies in protecting dynamically changing network
topologies and perimeters, which occurs due to VM migra-
tion and automated scaling of NFs. Traditional firewalls –
with their dependence on restricted entry points to a more
static network topology – cannot meet the requirement of
defending virtual networks.

Solution:
The proposed solution is a framework called VNGuard,

designed specifically to manage virtual firewalls on virtual
networks. The three major contributions are: (i) a high-level
language for specifying security policies, (ii) a method for
computing an optimal placement of virtual firewalls, and (iii)
means for adapting virtual firewalls to protect the virtual net-
work as its VMs change and/or migrate. Therefore, the main
contribution is not an implementation of a specific firewall
NF, but rather a framework for supporting software-based
firewalls. To evaluate VNGuard, the authors implemented a
firewall using ClickOS [9] as a base, and all the components
of the VNGuard framework. As ClickOS requires that a vir-
tual firewall be rebooted every time its rules are updated, the
authors designed three new Click elements: to store firewall
rules, process packets against the rules, and support firewall
rule additions/deletions. VNGuard software is currently a
research prototype, but Deng et al. [49] plan to implement
VNGuard in open-source NFV platforms such as Open Plat-
form for NFV (OPNFV) [50].

Evaluation:
Using NSF CloudLab testbed, three experiments were

run to: (i) evaluate firewall performance, (ii) test the optimal
firewall placement module, which used aMatlab Integer Pro-
gramming solver, and (iii) evaluate adaptability by measur-
ing the time to add/delete firewall rules. Firewall throughput
was measured for fairly low incoming packet rates (10Mbps
to 90Mbps) [51]. Improving packet processing rates was
not a goal of this work. For a firewall with 900 rules (a 2012
reference [52] is cited to state that an average firewall has
793 rules), processing time was around 6 to 7 microseconds.
Optimal firewall placement depends on the number of rules,
and the number of instances (VMs). As both parameters
increase, the time to find an optimal solution also increases.
But even with 2100 rules across seven instances, it took less
than two tenths of a second to place a firewall. Firewall rule
addition took fewer than 300 ms to alter 450 rules; deletion
speed was similar.

4.2.2 NAT

Olteanu et al. [53] set out to determine whether commodity

hosts running a software implementation of a stateful appli-
cation such as NAT can achieve performance comparable to
that of NAT appliances designed with custom hardware. The
answer is that their NAT software when run on six commod-
ity hosts could perform address translation at 40Gbps with
64B packets. By adding 9 more servers, their NAT software
could handle 64B packets at 100Gbps. Such high-speed
NAT systems are required for provider deployments, and are
referred to as carrier-grade NAT.

Their carrier-grade NAT solution consists of three com-
ponents: (i) high-performance NAT software for a single
host, (ii) a load balancer that distributes packets to multiple
hosts running the NAT software, and (iii) dynamic scaling,
i.e., adding more NAT hosts as the load increases, and re-
moving hosts as the load decreases.

The single-host NAT software leverages Click modu-
lar router and netmap software. A single-core instance of
this NAT software can process 2M packets/sec. Their load
balancer consists of an OpenFlow 1.0 switch that is pre-
programmed with flow-table entries to distribute packets
coming from inside the network as well as packets com-
ing from outside the network efficiently. To keep the size
of the flow table small, the solution requires the assign-
ment of external IP addresses to each of the individual NAT
host interfaces. Other solutions are possible if not limited
by OpenFlow 1.0 features. For dynamic scaling, after dis-
cussing the overhead of VM migration, the solution is to
migrate connections in groups, and to daisy-chain NAT pro-
cessing in one of the original hosts and a new host while
migrating connections.

5. Management and Network Orchestration (MANO)

Mijumbi et al. [54] describe NFV MANO as consisting
of (i) Virtualized Infrastructure Manager (VIM), (ii) VNF
managers, and (iii) NFV orchestrator. The VIM manages
the physical servers and virtual machines that constitute
the NFVI hardware. The VNF managers manage individ-
ual network functions. The NFV orchestrator supports the
chaining of network functions to create services. This pa-
per also describes several NFV MANO projects, and pre-
standardization MANO products, that are interestingly from
equipment vendors such as Alcatel-Lucent, Ciena and HP,
not communication service providers. Finally, some of the
MANO research challenges listed include resource manage-
ment, FCAPS management across a service lifecycle, pro-
grammability, and interfacing.

The relation between the components of the MANO ar-
chitecture and traditional Operations Support Systems (OSS)
and Business Support Systems (BSS), and the interface spec-
ification between the NFV Orchestrator and OSS/BSS, are
described in an ETSI document [55].

Although the term MANO does not appear in a paper
[56] on an SDN-NFV architecture, the paper describes a hi-
erarchical solution that includes an SDN controller, a service
manager, an NF orchestrator and NF managers. Protocols
are defined between the various components. Solutions are
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provided for creating static and dynamic service chains. The
solution is implemented and evaluated. The goal is to re-
duce load on the SDN controller. This architecture appears
to inter-mingle control-plane and management-plane func-
tions, but this inevitably occurs when considering configu-
ration management.

One of the main problems in service chaining is re-
source allocation. Since an orchestrator manages service
chains, one of its fundamental roles is to perform optimal
resource allocation. A comprehensive survey [57] reviews
papers on resource allocation. For example, Xia et al. [58]
focused on a service chaining problem in an electrical/optical
hybrid data center. They propose a heuristic algorithm for
on-demand VNF placement that minimizes the number of
optical/electrical/optical (O/E/O) conversions. In another
paper [59], the same authors proposed using NF service
chains to detect and steer large flows to the optical domain,
and quantify the resulting energy savings possible with this
solution. Bari et al. [60] proposed a heuristic algorithm
for enterprise networks that finds the appropriate number
and placement of VNFs to optimize opex and network re-
source utilization without violating SLAs. D’Oro et al. [61]
applied non-cooperative game theory to compose a service
chain with distributed computing. The proposed scheme
converges to a Nash equilibrium in polynomial time, and
preserves network users’ privacy. Qu et al. [62] proposed a
VNF scheduling method based on a genetic algorithm that
reduces makespan and latency.

6. Service Chaining

Section 6.1 offers a general example of service chaining.
Section 6.2 describes an example service chain created with
ApplianceBricks. Section 6.3 describes two ubiquitous grid
(uGrid) service chain examples. Atomic functions and dis-
aggregation are concepts related to service chains and are
hence described in Sect. 6.4. All the software described in
this section are research prototypes, and do not appear to be
available as open-source packages.

6.1 General Example

The term service function chaining (or simply service
chaining) denotes “an ordered list of instances of service
functions” (such as firewalls, load balancers, NATs, or
other application-specific functions), and “the subsequent
‘steering’ of traffic flows through those service function”
[63], [64].

Figure 8 illustrates a service chain between two routers.
The service chain consists of a firewall, a NAT, a DPI, and
a cache, all of which are implemented in software on com-
modity hosts. These network functions could be deployed
in VMs in a single server, or could be distributed across
multiple servers. The servers could be in an edge-cloud
or in a commercial-cloud datacenter. High-speed optical
networks offer the opportunity to offload some NFs to a
remote datacenter if additional compute resources are re-

Fig. 8 Service chaining for Internet service.

quired. However, WAN propagation delays may impact the
overall service-chain performance. Therefore, performance
requirements should be considered while choosing servers,
and their corresponding datacenters, for execution of NFs in
a service chain.

Multiple service chains could share one network func-
tion. For example, Deep Packet Inspection (DPI) is a com-
plex function that is not executed on all flows in one service
chain. Therefore, a DPI module could be part of multiple
service chains.

6.2 ApplianceBricks

The ApplianceBricks solution [65] is positioned as a general
architecture for NFV. The implementation uses Click and
DPDK.A4-server cluster prototype is used to test NF service
chains consisting for three applications: (i) mini-forwarding,
(ii) IP-layer forwarding, and (iii) firewall. Mini-forwarding
is basic packet forwarding from an input interface to a spec-
ified output interface without header processing [66]. In the
first two service chain configurations, only mini-forwarding
application is tested and measurements show a throughput of
6.8Gbps with 64B packets. The third service chain includes
5-tuple dispatching, firewall filtering, and IP-layer forward-
ing, and a performance rate of 2.2Gbps with 64B packets is
reported.

6.3 uGrid Service Chain Examples

The uGrid environment [67], [68] extends the NFV service
chaining concept fromnetwork functions to devices, general-
purpose software program, and content. These additional
components are referred to as “service parts.”

Figure 9 shows an example of service chains in the
uGrid environment. The bold dashed line shows a ser-
vice chain consisting of (i) a camera (device), (ii) a video-
processing software program running on an edge server, (iii)
a program running on a commercial cloud-computing server,
which could, for example, merge the camera videowith some
other related video content, and (iv) reception of the com-
bined video on a television. The uGrid solution offers tools
for creating such flexible service chains.

The narrow dashed line in Fig. 9 illustrates another ser-
vice chain. This is a Machine-to-Machine (M2M) service
chain in which an autonomous vehicle receives video data
from an in-network video-processing program running on an
edge server. Thus, the uGrid extended service-chain concept
can be applied for such critical services in the future.

To create service chains and receive desired services in
the uGrid environment, clients should first locate (discover)
the required service parts. A method for discovering service
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Fig. 9 Example service chains in Ubiquitous Grid (uGrid) networking.

parts, based on Universal Description, Discovery and Inte-
gration (UDDI), was proposed by Akagi et al. [67]. Service
parts are divided into multiple groups, and each group is
managed by several UDDI registries. In each group, one
of the UDDI registries is configured as a super-peer. The
super-peer stores information about all the UDDI registries
in the group. Search queries for service parts, which are sent
by clients, are processed by multiple super-peers evenly to
avoid query losses due to access concentration.

To realize the uGrid environment, another approach,
called IP Routing/Signaling-based uGrid service provision-
ing, was proposed by Ishii et al. [68]. In this approach, IP
addresses are assigned to each service part so that service
chains can be provisioned in the network layer. The search
for service parts, and the routing of service chains (called
Service Routing), are executed with an extended version
of Open Shortest Path First-Traffic Engineering (OSPF-TE),
which advertises the link state of each service part, e.g., con-
tent type, current processing load, and current power con-
sumption. Based on the topology of service parts determined
by the extended OSPF-TE, the service-chain route is com-
puted. The reservation of resources in service parts, and the
establishment of a service chain (called Service Signaling),
are executed with an extended version of Resource reSerVa-
tion Protocol-Traffic Engineering (RSVP-TE) of Generalized
Multi-Protocol Label Switching (GMPLS). The extended
RSVP-TE establishes the connections between service parts,
and configures the function of each service part along the
service-chain route. Ishii et al. implemented a prototype
system for the provisioning of a simple video grid service
using Service Signaling [68].

6.4 Atomic Functions and Disaggregation

Okamoto et al. [69] proposed to divide VNFs into small sub-
functions called “atomic functions” as illustrated in Fig. 10.
A network service with flexible performance can be provi-
sioned by chaining atomic functions. The output of an atomic
function could be transferred as input to another atomic func-
tion located in the same VM/server, or in another VM/server.
The size of each atomic function is determined by the pro-
cessing power of the CPU. The use of atomic functions in-
crease the flexibility with which resources can be allocated.

Fig. 10 ATOMIC-NFV: A firewall NF implemented with smaller blocks.

The atomic-function concept is similar to the “disag-
gregation” concept proposed for optical transport networks
[70], [71] and server equipment [72]. With disaggregation,
hardware is grouped into resource pools [73]. Resources are
chained together to realize a transport function or a com-
puting function. A specific hardware component could be
considered as an atomic function.

These concepts stretch the basic ideas of NFV and ser-
vice chaining to include network transport hardware and
server hardware, to offer a greater level of flexibility and
scalability. To fully leverage these concepts, correspond-
ing advances are required in SDN controllers and service-
chaining orchestrators.

7. Conclusions: Pros and Cons of NFV

Early IP routers in the 70s were implemented in software
on general-purpose computers. It has been interesting to
observe how the progression of processing, memory, and
cloud computing technologies has brought us full circle back
to NFV. Whether NFV can deliver on its promise of saving
capex and opex for service providers and enterprise networks
remains to be seen. Open-source software is often viewed
by IT division managers as requiring network engineers who
are skilled software developers, which could increase opex.
General-purpose hosts running common operating systems
could be more vulnerable to security attacks when com-
pared to proprietary router operating systems. Also, whether
scalable-NFV clusters can handle 100-Gbps packet process-
ing at lower capex when compared to traditional custom-
hardware based routers is an important question to answer
for service providers. In spite of these challenges, NFV
offers academic researchers an exciting opportunity to ex-
periment with new types of protocols, new techniques for
fast packet processing, table-lookup operations, and for the
marketplace to create and test new networking service ideas.
Furthermore, many cloud and Internet service providers
have invested considerable resources in developing NFV,
and therefore the promised capex/opex savings are likely to
be realized.
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